2018 MA0 PRECALCULUS HUSTLE ANSWERS and SOLUTIONS

- 1. -44 Multiply column 1 by 2 and add to column 4 giving $\begin{vmatrix} -1 & 2 & 3 & -1 \\ 0 & 3 & 4 & -5 \\ 1 & 0 & 0 & 0 \\ 5 & 1 & -3 & 12 \end{vmatrix}$ and expand by minors on row 3. Det = $1(-1)^{3+1}\begin{vmatrix} 2 & 3 & -1 \\ 3 & 4 & -5 \\ 1 & -3 & 12 \end{vmatrix}$ = 96 15 + 9 + 4 30 108 = -44.
- 2. 3 Factoring gives $f(x) = \frac{(x-2)(x^2+2x+4)}{(x-4)(x+5)}$. There are 2 vertical asymptotes: x=4, x=-5. Since the power of the numerator is greater, long division gives a slant asymptote of y = x + 3. So three asymptotes exist.

3.
$$27\sqrt{3}$$
 Use $A = \frac{1}{2}ab\sin C = \frac{1}{2} \cdot 9 \cdot 12 \cdot \sin 60^0 = 27\sqrt{3} un^2$

4.
$$\frac{13}{36}$$
 Let $\alpha = \sin^{-1}\left(\frac{-1}{3}\right)$ in quadrant 4, so $\cos(2\alpha) = \frac{8}{9} - \frac{1}{9} = \frac{7}{9}$. Let $\beta = \sec^{-1}\left(\frac{-13}{12}\right)$ in quadrant 2, making $\tan \beta = \frac{-5}{12}$. Then $\frac{7}{9} + \frac{-5}{12} = \frac{28 - 15}{36} = \frac{13}{36}$.

- 5. $V = \frac{\pi h^3}{16}$ Let the height be h. The diameter is $\frac{h}{2}$ and the radius would be $\frac{h}{4}$. Substituting into the volume formula, $V = \pi r^2 h = \pi \left(\frac{h}{4}\right)^2 h = \frac{\pi h^3}{16}$.
- 6. 4 The function has a period of 2π , a vertical shift (midline) of 1, and an amplitude of 5 which puts the minimum values at -4 so the graph crosses the x-axis twice each period. There are two periods so it crosses 4 times on the interval [- 2π , 2π].
- 7. $y = \log_3 4$ Since $x = \log_3 y$, we know that $y = 3^x$. The equation becomes $3^y + (3^2)^y = 20$ or $(3^y)^2 + 3^y - 20 = 0$, which factors to $(3^y + 5)(3^y - 4) = 0$. The solutions are $3^y = -5$ and $3^y = 4$. Only $3^y = 4$ has a value which is $y = \log_3 4$.
- 8. B When simplified, B becomes csc²x + cot²x = 1 but the Pythagorean Trig Identity has a minus sign. The other statements are true using co-functions in A and Pythagorean Identities in C and D.
- 9. -5, -1, 4 p(-x) has a solution of 1 so the polynomial has a solution of -1. Synthetically dividing gives a quotient of $x^2 + x 20$. That factors into (x + 5)(x 4) = 0 and results in 3 solutions: -5, -1, and 4.
- 10. $6\sqrt{3}$ The hexagon can be broken into 6 equilateral triangles with side length of 2, the integral solution of the equation. The area then becomes $A = 6\left(\frac{1}{2} \cdot 2 \cdot 2 \sin 60^{\circ}\right) = 6\sqrt{3}$.

- Powers of 8 repeat the digits {8, 4, 2, 6}. Powers of 3 repeat the digits {3, 9, 7, 1}.
 Powers of 7 repeat the digits {7, 9, 3, 1}. 2018 divided by 4 has remainder of 2, so we need to use the second value in the sequences. 4 + 9 + 9 = 22.
- 12. 2 Finding the determinant of each side gives -11x 14 = 20 + 6x so x = -2.
- 13. -6 $f \circ f(x) = (x^2 + 3x)^2 + 3(x^2 + 3x) = x^4 + 6x^3 + 9x^2 + 3x^2 + 9x$ = $x^4 + 6x^3 + 12x^2 + 9x = x(x^3 + 6x^2 + 12x + 9)$ The sum of solutions for the cubic is -B/A, or -6/1 plus the value of x=0. Sum = -6.
- 14. $(4\sqrt{3}, -4)$ The original vector has a magnitude of 8 and a direction angle of $-60^{\circ} + 180^{\circ} = 120^{\circ}$. Rotating 150° clockwise puts the angle at -30° with the magnitude remaining at 8. The new vector's terminal point is $(8\cos(-30^{\circ}), 8\sin(-30^{\circ})) = (4\sqrt{3}, -4)$.

15.
$$\left(\frac{2}{3}, 1\right) \cup (1, 2) \cup (3, \infty)$$

The argument of the log must be positive.

The base of the log must be positive but not equal to 1. 3x - 2 > 0 gives x > 2/3. $3x - 2 \neq 1$ gives $x \neq 1$. Combining these domains results in $\left(\frac{2}{3}, 1\right) \cup (1, 2) \cup (3, \infty)$.

16.
$$-32$$
, $or - 32 + 0i$ $xy = 4 \cdot 8 cis\left(\frac{3\pi}{4} + \frac{\pi}{4}\right) = 32cis\pi = 32cos\pi + 32isin\pi = 32(-1) + 0.$

17.
$$\frac{73}{81}$$
 sin⁴x + cos⁴x = sin⁴x + 2sin²xcos²x + cos⁴x - 2sin²xcos²x = (sin²x + cos²x)² - (1/2)(4sin²xcos²x) = 1 - (1/2)(sin 2x)² = 1 - (1/2)(4/9)² = 1 - (8/81) = 73/81

Since we are given SSA information and the opposite side is smaller than the adjacent side, we need to check the height. h = $28\sin 30^\circ = 14$ which equals the opposite side and results in one right triangle.

19. 0
$$\sum_{i=1}^{12} (\cos(i\pi) + \sin(i\pi)) = \sum_{i=1}^{12} \cos(i\pi) + \sum_{i=1}^{12} \sin(i\pi) = \sum_{i=1}^{12} \cos(i\pi) + 0$$
$$= \sum_{i=1}^{12} \cos(i\pi) = 0 \text{ since cosine of odd multiples of } \pi = -1 \text{ and cosine of even}$$
multiples of $\pi = 1$. The sine of all multiples of $\pi = 0$.

20.
$$\frac{4}{3}$$
 If a, b, c, and d are the solutions of the equation, then the sum of the reciprocals,
 $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$, is $\frac{abc+acd+abd+bcd}{abcd}$. The product of the roots of the equation
is $\frac{6}{3}$ and the sum of the roots taken 3 at a time is $-\left(\frac{-8}{3}\right)$. Dividing, $\frac{8}{3} \div \frac{6}{3} = \frac{4}{3}$.

21.
$$\frac{1}{3}$$
 $P = \pi \div \left(\frac{3\pi}{4}\right) = \frac{4}{3}$ and $A = 4$. Thus, $\frac{P}{A} = \frac{4}{3} \div 4 = \frac{1}{3}$.

22.
$$\frac{1}{2}$$
 $\log_2 36 = \frac{\log 36}{\log 2}$ and $\log_3 36 = \frac{\log 36}{\log 3}$ so the reciprocals, when added, give $\frac{\log 2}{\log 36} + \frac{\log 3}{\log 36} = \frac{\log 6}{\log 36} = \log_{36} 6 = 1/2$.

23.
$$\frac{340}{3}$$
 or $113\frac{1}{3}$ The "drop" distances form the sequence: 20, 14, 9.8, ...
The "bounce" distances form the sequence: 14, 9.8, 6.86, ...
Both are infinite geometric sequences, so using the formula $= \frac{a_1}{1-r}$,
we get $S = \frac{20}{1-.7} + \frac{14}{1-.7} = \frac{34}{.3} = \frac{340}{.3}$ feet.

24. $\frac{9}{8}$ Cross-multiplying gives the equation $r - \frac{1}{3}r\sin\theta = 3$ or $3r = r\sin\theta + 9$ Substituting rectangular values gives $3\sqrt{x^2 + y^2} = y + 9$ Squaring both sides results in $9x^2 + 9y^2 = y^2 + 18y + 81$ which is an ellipse. Grouping and completing the squares: $9x^2 + 8y^2 - 18y = 81$ $9x^2 + 8(y^2 - \frac{9}{4}y + \frac{81}{64}) = 81 + \frac{81}{8}$ $9x^2 + 8(y - \frac{9}{8})^2 = \frac{729}{8}$ with center $(0, \frac{9}{8})$

25. 10
$$\prod_{k=1}^{9} \left(1 + \frac{1}{k} \right) = \sum_{k=1}^{9} \left(\frac{k+1}{k} \right) = \frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \dots \cdot \frac{9}{8} \cdot \frac{10}{9} = 10.$$